TOPOLOGY-IV M.MATH-II FINAL EXAM

Total 50 Marks

(1) Let M be a compact manifold with trivial tangent bundle. Show that $\chi(M) = 0$. (5 marks)

- (2) Prove that there is no nowhere vanishing vector field on S^{2n} . (6 marks)
- (3) If M is a compact manifold of odd dimension then show that the Euler characteristic $\chi(M) = 0.$ (10 marks)
- (4) Show that $H^p(S^2 \times S^4) \cong H^p(\mathbb{CP}^3)$ for every p, but that the graded algebras $H^*(S^2 \times S^4)$ and $H^*(\mathbb{CP}^3)$ are not isomorphic. (5 marks)
- (5) If M is an oriented connected manifold of dimension n, then compute $H^n(M)$. (8 marks)
- (6) Let M^m be a compact smooth submanifold of S^n with 0 < m < n 1. Let $U = S^n M^m$. Construct isomorphisms

$$H^p(U) \cong H^{n-p-1}(M)^* \qquad (1 \le p \le n-2)$$
 and show that $H^p(U) = 0$ for $p \ge n-1$ (8 marks)

(7) Consider a smooth map $f : N \to M$ between *n*-dimensional oriented smooth connected compact manifolds. Prove that if $H^n(f) : H^n(M) \to H^n(N)$ is non-zero, then $H^p(f) :$ $H^p(M) \to H^p(N)$ is injective for every *p*. (8 marks)